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Abstract

We present a Ca3DPose(Canonical 3D Pose)
estimation method via object-level classifica-
tion and reimplementation of a NPCS (Nor-
malized Part Coordinate Space) based method
to object level to do 3D pose estimation. We
use the newly released 3D scene dataset Mul-
tiscan with over 200 scans. Our model re-
lies on the MinkowskiEngine-powered U-Net
backbone or PAConv backbone to get point-
level features, voxelized or max pooled point-
level features to get object-level features and
does object-level classification. We formalize
3D Pose as a combination of the up-direction
class, front-direction latitude class, and front-
direction longitude class. As a result, we used
the results of the NPCS method as a baseline,
and our Ca3DPose outperformed the baseline
method in the Multiscan dataset. We also
found that PAConv backbone outperformed
the U-Net backbone. Our source and data
are publicly available at https://github.
com/Kaola-2115/MIN3dCaPose

1 Introduction

3D object pose estimation is an essential task in
robotics and 3D scene research. It is widely used
as an essential benchmark in newly released 3D
scene datasets and part of the segmentation and re-
construction work pipeline. 3D pose estimation
is also closely related to the 6D or 9D pose esti-
mation and bounding box predictions. Previously,
there are instance-level works based on CAD mod-
els (Wang et al., 2019a; Nguyen et al., 2022a), and
works based on a single RGB frame or consistent
video(He et al., 2021). Nevertheless, those two
kinds of pose estimation have limitations. Single
RGB-based works usually have low performance.
While the CAD model-based works also have lim-
itations due to the preknowledge of CAD models,
It’s hard to generate them in real word datasets
from scanning. GAPartNet also introduced works
based on point clouds(Geng et al., 2022). Those

works need some preprocesses of data, such as the
reconstruction of 3D scenes and object-level anno-
tations or segmentations.

The previous category-level pose estimation
works can be classified as point-level regression
methods GAPartNet (Geng et al., 2022), pointwise
classification methods (Wang et al., 2019a), and
methods combining classification and regression
model as (Mahendran et al., 2018). While they
also have limitations. GAPartNet is only trained
on nine strictly defined part classes rather than ob-
jects. Wang’s work only has nice performance, i.e.,
mAP within (5°,5¢m) error, i.e., the prediction
whose angle between the predicted direction and
the real direction is less than 5° and the predicted
distance and the real distance is less than 5cm is
a correct prediction, is greater than 60, on the syn-
thetical dataset with real background images and
rendered foreground objects. Their best perfor-
mance on real word RGB-D images is only 26.7
as mAP within (5°, 5em) error.

Those previous works and limitations moti-
vate us to design a new object-level classifica-
tion model architecture. Since Multiscan dataset
is newly released with 230 scans of 108 indoor
scenes containing 9458 objects and their dataset
has an annotation of 3d object pose (Mao et al.,
2022), we trained our model on the objects with
the articulated part in Multiscan. Figure 1 shows
visualizations of annotated data, fig. 1(i) is un-
canonicalized chair, and fig.1 (ii) is the canonical-
ized chair, and red arrow shows annotated front
direction. The chair is rotated to normalized space
by aligning the front direction to x axis and align-
ing up direction to z axis. Since there is no base-
line method in the new dataset, we re-implemented
the NPCS method from GAPartNet and changed
the part-level input to object-level as the base-
line method. We use two backbones, the voxel
based U-Net (Graham et al., 2017) and the point
convolution-based PAConv(Xu et al., 2021), and
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then make comparisons. We use these backbones
to get point-level features in both models. The
first backbone network is powered by Minkowski
Engine (Choy et al., 2019), and part of the imple-
mentation is from MINsu3D (Zhang et al., 2022).
While the second one implements point convolu-
tion using tricks in PAConv.Finally, our model out-
performs the baseline model.

L

(ii) canonicalized pose, red
arrow shows front direction

(1) un-canonicalized pose

Fig. 1: Annotated 3D Pose Visualization

In summary, the main contributions of this work
are:

* A new Ca3DPose model based on the object-
level classification to predict canonical 3d-
object Pose from point cloud data and a new
latitude/longitude/up-direction-based classifi-
cation method.

* Reimplement an NPCS Pose estimation
method and change the part-level model to
object-level.

e Compare the voxel-based and point
convolution-based backbones in this task.

* Get start-of-the-art 3d pose estimation results
on the Multiscan dataset.

2 Related Work

This section reviews the related work on 3D object
pose estimation, including point-level regression
and classification models. Those works also have
input data, such as CAD models, RGB-D images
and video frames, and pre-generated point clouds.
Some of the works also estimate 6D or 7D(i.e., 3D
rotation, 3D translation, and 1D scale) poses be-
side the basic 3D Pose.

2.1 Instance-Level 3D Pose Estimation

Due to the importance of 3D Pose, there are a
lot of instance-level works such as (He et al.,

2021; Li et al., 2018; Labbé et al., 2020; Peng
et al., 2019; Sundermeyer et al., 2018; Wang et al.,
2019a). Instance-level means their works need the
preknowledge of the CAD models of the objects.
Most works predict the 6D Pose (3D rotation and
3D location) from input RGB-D images, single
RGD images, or video frames. Although the start-
of-art work achieves high accuracy, those works
are still hard to be used in predictions of objects in
real work scenes.

2.2 Category-Level 3D Object Detection

Recently, works have been doing a more challeng-
ing task, i.e., predicting 3D Pose without knowing
the CAD models. Most of the works are used on
real word 3D scene datasets. (Wang et al., 2019a)
introduced a normalized object coordinate space,
(Xiang et al., 2017) introduced the PoseCNN
model, (Weng et al., 2021)does pose tracking
for live point cloud streams, and (Chen et al.,
2020) proposed CASS(Canonical Shape Space)
which has some different from NOCS. (He et al.,
2021) also introduced an NPCS(Normalized Part
coordinate space) when proposing their domain-
generalizable object perception. They got the
start of the art 7D pose estimation results in their
dataset.

Most previous works are based on point-level re-
gression, using their model to predict coordinates
per point in canonical space and regression meth-
ods to get 3D Pose, such as the (Umeyama, 1991)
used by GAPartNet. Some of the works use point-
level classification as the last step of prediction.
(Wang et al., 2019a) and (Xiang et al., 2017) make
the comparison between the classification and re-
gression methods.

Both the point-level classification and regres-
sion have limitations. Direct regression has the
potential to introduce instability during training,
while point classification could introduce more pa-
rameters w.r.t. point size and class number, mak-
ing training unpractical. Therefore, we introduced
a new object-level classification method by for-
malizing 3d Pose as a combination of the up-
direction class, front-direction latitude class, and
front-direction longitude class. Also, we reim-
plemented the NPCS method as a baseline. In
the Multiscan dataset, our Min3dCaPose method
outperforms the baseline method significantly in
Ac_5, AC_10, and AC_20.
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Fig. 2: Our Ca3DCaPose Method Pipeline In encoder side, m=30: voxel grid size, the input features is point
position(N, 3) + colors(N, 3). In the decoder side Lat: latitude class number, Lng: longitude class number, Up: up

class number.

3 Problem Formulation

Given the annotated or predicted object segmen-
tation from a 3D scene, we investigate the prob-
lems of object-level 3d pose classification in our
Ca3DPose model and the problem of regression in
normalized object coordinate space in the reimple-
mentation of the NPCS model.

3D Pose Classification. The input to our system
is the point cloud of the object P € RV *6, where
N denotes the number of points and six dimen-
sions are the three dimension xyz coordinate and
three dimension RGB color for each point. To pre-
dict the 3D Pose of the object, we try to predict
the front direction F' = (x1,y;, 21)and up direc-
tion UP = (z2,¥2,22) in the world coordinate
system.

lg : latitude of the direction, it is computed
from the x, y, z axes of the direction as: [, =

arctan(\/x%Tyz)

L, : formulated latitude class and N, : the number
of latitude classes, we formulate the latitude class
L, of objects as

L, = round(N, X %)

I, : longitude of the direction, it is computed
from the x and y axes of the direction as: [, =
arctan(¥)

L,, : formulated longitude class, and NV,, : the num-
ber of longitude classes, we formulate the longi-
tude class L,, of objects as

L,, = round(N,, x Z"Q%)

Latitude and Longitude class are calculated from
the front direction. U : formulated up class and
N : the number of up classes, we also formulate
the up class of objects as

U = round(N x “£%), U : up level of the object,
and it is computed from the y, z axes of the up
direction as:

u = arctan(¥),

Up class are calculated from the up direction; the
three classes are independent of each other. Figure
3 illustrates the Ing and lat classification given the
front direction.

Lat Class m
Lng Class n

Fig. 3: Latitude and Longitude Class

Regression. Given the object coordinate P €
RN*3 from coordinate+color input P € RN*6,
the NPCS system tries to predict the object
coordinate Py, € RNi%3 in canonical space, N;
denotes the number of points after removing out-



liers in RANSAC algorithm. And the 3D rotation
Rotation € R? is computed. The ground truth
3D rotation is computed from Euler angle rotation
matrix Mr € R3*3 By aligning front and up di-
rections to the x and y axes in world coordinates.

4 Method

4.1 Ca3DPose: Object-level Classification

Architecture Overview. As shown in Figure 2.
In U-Net backbone method, following Minsu3d’s
previous works, our object-level classification-
based method leverage the Sparse U-Net as
the backbone to produce point-wise feature F
(N(E16). We leverage the U-Net implementation
from Minsu3d, which is powered by Minkowski.
The backbone network is followed by a 3D
30E30E30 voxelization model to get a fixed size
feature (30(E30(E30E16), and the empty voxel is
assigned zero features to encode the geometry of
the 3D object better. The voxelization model is
flattened to get an object-level feature. In PAConv
backbone method, we modify point convolution
following tricks in PAConv and get point level fea-
tures. We use max pool layers to get object-level
features. At the decoder side of the Ca3DPose,
3 MLP classifiers are used to predict Ing_class,
lat_class, and up_class. And the front direction, up
direction, and 3D rotation Rotation>are computed
by the three classes.

Loss Function: The pretrained backbone U-Net
network uses the same loss function as described
in Minsu3d. In our Ca3dPose model, we use
3 standard softmax loss functions for classifica-
tion Ling, Liat, Lyp. Then we assigned different
weights to 3 classifications to get total loss : L =
Wy * Llng + Wa sk Ligt + W3 Lup

4.2 Normalized Object Coordinate
Space-based Regression

Architecture Overview . As shown in Figure
4. As the work GAPartNet introduced, their nor-
malized Object Coordinate based method lever-
age the Sparse U-Net as a backbone to produce
point-wise feature F° € (N x 16). Our reim-
plementation uses the U-Net implementation from
MINSu3d, which is powered by Minkowski En-
gine. Their work use domain-generalizable object
segmentation, while we use annotated object seg-
mentation in Multiscan directly. As NOCS work
suggested, the backbone network is followed by

three MLPs to get point-wise NOCS regression.
Then using RANSAC(Fischler et al., 1981)and
Umeyama(Umeyama, 1991), the NOCS method
can get the 3D rotation Rotation € R3and 3D
translation] € R>Different from the original
NOCS method, we set the 1D scale as 1 in the
Umeyama algorithm rather than getting the 7D
pose results. Finally, we use the 3D rotation as
the 3D pose estimation results.

Loss Function: The pretrained backbone U-Net
network uses the same loss function as described
in MINSu3d. In the NOCS regression method, as
GAPartNet suggested, we use three loss functions.

The point-wise coordinate loss: L(P, Pyorm) =

T,Y,2 . r—x* 2+ —y* 2+ z—z* 2 :
2oy zen; (( ) Hy—y ) ) ), the rotation

prediction loss: g}{ = sqrt(R, R*), and transla-
tion prediction loss: Ly = sqrt(T,T*)

Then we assigned different weights to three
kinds of losses to get the total loss:
L =W L(P, Pnorm) 4+ Wox Lr + W3 % Ly

Symmetry-aware Pose Estimation Unlike
the original NOCS work in GAPartNet, we use
the original regression rather than the NPCS re-
gression loss by their work. Therefore, we do not
tolerate symmetries for object pose estimation.

S Experiments and Results

Data Split and Statistics We randomly split the
Multiscan dataset into train and test sets by ratio
5:1. Since each scene contains multiple scans, we
split dataset by scene level to avoid the same ob-
jects appearing in both sets. We remove the ob-
jects with the semantic label "-1" and train on all
the other objects, and Table 1 shows the objects
and scenes number in train and test sets.

Dataset | Scenes | Objects
train 171 2941
test 37 604

Table 1: Dataset Statistics

Evaluataion Metrics: Following the previous
3D pose estimation work in GAPartNet, we com-
pute the average error angel Rerr as the sum of
the error angles of the front and up directions.
we modify the widely-used metrics (5°,5cm),
(10°,10cm) to our own metrics AC_5, AC_10 and
AC_20 by removing the translation toleration part,
e.g., AC_5 is the accuracy of prediction that the
error angle is within 5°
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Fig. 4: Re-implemented NOCS Method Pipeline

Network Architecture and Computation Time.
Details are shown in appendix sections A and B

Main Results. Fig5 shows the best results of
Ca3DPose model using PAConv backbone. Figb
shows other results as comparisons. It shows that
we achieve an AC_5 of 0.631, AC_10 of 0.697 and
AC_20 of 0.763, which outperforms the baseline
method. Also, the PAConv backbone method out-
performs the U-Net backbone method since point
convolution keeps more input features compared
with voxelization in U-Net.

AC10 Ac20 Rerr Number

door 0610 0659 0.683 0937
0583

0657 0857 0236 70

0824 0941 1.000

0727 0.864

0727 0788

0.455 0500

0594 0625

and compare the results in the Multiscan dataset
and show that our Ca3DPose models based on
both backbones outperform the baseline method.
Future work should investigate the performance in
another 3D scene dataset.
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A Network architecture

Ca3DPose In the U-Net backbone stage, we
use the exact same network architecture as
MINSu3d. In the voxelization stage, we use
a 30 x 30 x 30 voxel grid. In MLP classi-
fier stage, we use three (n_sizes X 256), (256 x
Ing/lat/up_classes)linear layers, where N_sizes
denotes the flattened object-level features. Table2
shows the parameter size.

Part(type) Output Shape | Param#
backbone - 7.5M
fc1(Linear) (n_size, 256) | 56.6M
dropout(Dropout) | (n_size, 256) 0
fc_lat(Linear) (256, 128) 329K
fc_Ing(Linear) (256, 256) 65.8K
fc_up(Linear) (256, 256) 65.8K

Table 2: Hyper-parameters of Ca3DPose Model

NOCS In U-Net backbone stage, we use the
same network architecture as Ca3DPose. Then we
use (16 x9), (9% 3) linear layers in MLP to predict
NOCS coordinates in three channels.

B Training Details and Computation
Times

- Our network is implemented on Python 3.8 and
Pytorch 1.8.2, and our environment is
- CPU: Intel Core i7-12700 @ 2.10-4.90GHz x 12
- RAM: 32GB
- GPU: NVIDIA GeForce RTX 3090 Ti 24GB
- System: Ubuntu 20.04.2 LTS

It takes us 12hr to train the Ca3DPose model
with U-Net backbone, 4hr to train the Ca3DPose
model with PAConv backbone and 30hr10min to
train the NOCS model; the average inference time
per object is 1.004s

C Visualization

We provide visualization of 3D pose estimation,
the visualization contains current coordinates, ob-
ject point cloud, and front direction. The default
visualization code shows good results compari-
son within A_5 and predictions comparison over
AC_10.



