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Abstract

We present a Ca3DPose(Canonical 3D Pose)001
estimation method via object-level classifica-002
tion and reimplementation of a NPCS (Nor-003
malized Part Coordinate Space) based method004
to object level to do 3D pose estimation. We005
use the newly released 3D scene dataset Mul-006
tiscan with over 200 scans. Our model re-007
lies on the MinkowskiEngine-powered U-Net008
backbone or PAConv backbone to get point-009
level features, voxelized or max pooled point-010
level features to get object-level features and011
does object-level classification. We formalize012
3D Pose as a combination of the up-direction013
class, front-direction latitude class, and front-014
direction longitude class. As a result, we used015
the results of the NPCS method as a baseline,016
and our Ca3DPose outperformed the baseline017
method in the Multiscan dataset. We also018
found that PAConv backbone outperformed019
the U-Net backbone. Our source and data020
are publicly available at https://github.021
com/Kaola-2115/MIN3dCaPose022

1 Introduction023

3D object pose estimation is an essential task in024

robotics and 3D scene research. It is widely used025

as an essential benchmark in newly released 3D026

scene datasets and part of the segmentation and re-027

construction work pipeline. 3D pose estimation028

is also closely related to the 6D or 9D pose esti-029

mation and bounding box predictions. Previously,030

there are instance-level works based on CAD mod-031

els (Wang et al., 2019a; Nguyen et al., 2022a), and032

works based on a single RGB frame or consistent033

video(He et al., 2021). Nevertheless, those two034

kinds of pose estimation have limitations. Single035

RGB-based works usually have low performance.036

While the CAD model-based works also have lim-037

itations due to the preknowledge of CAD models,038

It’s hard to generate them in real word datasets039

from scanning. GAPartNet also introduced works040

based on point clouds(Geng et al., 2022). Those041

works need some preprocesses of data, such as the 042

reconstruction of 3D scenes and object-level anno- 043

tations or segmentations. 044

The previous category-level pose estimation 045

works can be classified as point-level regression 046

methods GAPartNet (Geng et al., 2022), pointwise 047

classification methods (Wang et al., 2019a), and 048

methods combining classification and regression 049

model as (Mahendran et al., 2018). While they 050

also have limitations. GAPartNet is only trained 051

on nine strictly defined part classes rather than ob- 052

jects. Wang’s work only has nice performance, i.e., 053

mAP within (5◦, 5cm) error, i.e., the prediction 054

whose angle between the predicted direction and 055

the real direction is less than 5◦ and the predicted 056

distance and the real distance is less than 5cm is 057

a correct prediction, is greater than 60, on the syn- 058

thetical dataset with real background images and 059

rendered foreground objects. Their best perfor- 060

mance on real word RGB-D images is only 26.7 061

as mAP within (5◦, 5cm) error. 062

Those previous works and limitations moti- 063

vate us to design a new object-level classifica- 064

tion model architecture. Since Multiscan dataset 065

is newly released with 230 scans of 108 indoor 066

scenes containing 9458 objects and their dataset 067

has an annotation of 3d object pose (Mao et al., 068

2022), we trained our model on the objects with 069

the articulated part in Multiscan. Figure 1 shows 070

visualizations of annotated data, fig. 1(i) is un- 071

canonicalized chair, and fig.1 (ii) is the canonical- 072

ized chair, and red arrow shows annotated front 073

direction. The chair is rotated to normalized space 074

by aligning the front direction to x axis and align- 075

ing up direction to z axis. Since there is no base- 076

line method in the new dataset, we re-implemented 077

the NPCS method from GAPartNet and changed 078

the part-level input to object-level as the base- 079

line method. We use two backbones, the voxel 080

based U-Net (Graham et al., 2017) and the point 081

convolution-based PAConv(Xu et al., 2021), and 082
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then make comparisons. We use these backbones083

to get point-level features in both models. The084

first backbone network is powered by Minkowski085

Engine (Choy et al., 2019), and part of the imple-086

mentation is from MINsu3D (Zhang et al., 2022).087

While the second one implements point convolu-088

tion using tricks in PAConv.Finally, our model out-089

performs the baseline model.090

(i) un-canonicalized pose (ii) canonicalized pose, red
arrow shows front direction

Fig. 1: Annotated 3D Pose Visualization

In summary, the main contributions of this work091

are:092

• A new Ca3DPose model based on the object-093

level classification to predict canonical 3d-094

object Pose from point cloud data and a new095

latitude/longitude/up-direction-based classifi-096

cation method.097

• Reimplement an NPCS Pose estimation098

method and change the part-level model to099

object-level.100

• Compare the voxel-based and point101

convolution-based backbones in this task.102

• Get start-of-the-art 3d pose estimation results103

on the Multiscan dataset.104

2 Related Work105

This section reviews the related work on 3D object106

pose estimation, including point-level regression107

and classification models. Those works also have108

input data, such as CAD models, RGB-D images109

and video frames, and pre-generated point clouds.110

Some of the works also estimate 6D or 7D(i.e., 3D111

rotation, 3D translation, and 1D scale) poses be-112

side the basic 3D Pose.113

2.1 Instance-Level 3D Pose Estimation114

Due to the importance of 3D Pose, there are a115

lot of instance-level works such as (He et al.,116

2021; Li et al., 2018; Labbé et al., 2020; Peng 117

et al., 2019; Sundermeyer et al., 2018; Wang et al., 118

2019a). Instance-level means their works need the 119

preknowledge of the CAD models of the objects. 120

Most works predict the 6D Pose (3D rotation and 121

3D location) from input RGB-D images, single 122

RGD images, or video frames. Although the start- 123

of-art work achieves high accuracy, those works 124

are still hard to be used in predictions of objects in 125

real work scenes. 126

2.2 Category-Level 3D Object Detection 127

Recently, works have been doing a more challeng- 128

ing task, i.e., predicting 3D Pose without knowing 129

the CAD models. Most of the works are used on 130

real word 3D scene datasets. (Wang et al., 2019a) 131

introduced a normalized object coordinate space, 132

(Xiang et al., 2017) introduced the PoseCNN 133

model, (Weng et al., 2021)does pose tracking 134

for live point cloud streams, and (Chen et al., 135

2020) proposed CASS(Canonical Shape Space) 136

which has some different from NOCS. (He et al., 137

2021) also introduced an NPCS(Normalized Part 138

coordinate space) when proposing their domain- 139

generalizable object perception. They got the 140

start of the art 7D pose estimation results in their 141

dataset. 142

Most previous works are based on point-level re- 143

gression, using their model to predict coordinates 144

per point in canonical space and regression meth- 145

ods to get 3D Pose, such as the (Umeyama, 1991) 146

used by GAPartNet. Some of the works use point- 147

level classification as the last step of prediction. 148

(Wang et al., 2019a) and (Xiang et al., 2017) make 149

the comparison between the classification and re- 150

gression methods. 151

Both the point-level classification and regres- 152

sion have limitations. Direct regression has the 153

potential to introduce instability during training, 154

while point classification could introduce more pa- 155

rameters w.r.t. point size and class number, mak- 156

ing training unpractical. Therefore, we introduced 157

a new object-level classification method by for- 158

malizing 3d Pose as a combination of the up- 159

direction class, front-direction latitude class, and 160

front-direction longitude class. Also, we reim- 161

plemented the NPCS method as a baseline. In 162

the Multiscan dataset, our Min3dCaPose method 163

outperforms the baseline method significantly in 164

Ac_5, AC_10, and AC_20. 165
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Fig. 2: Our Ca3DCaPose Method Pipeline In encoder side, m=30: voxel grid size, the input features is point
position(N, 3) + colors(N, 3). In the decoder side Lat: latitude class number, Lng: longitude class number, Up: up
class number.

3 Problem Formulation166

Given the annotated or predicted object segmen-167

tation from a 3D scene, we investigate the prob-168

lems of object-level 3d pose classification in our169

Ca3DPose model and the problem of regression in170

normalized object coordinate space in the reimple-171

mentation of the NPCS model.172

3D Pose Classification. The input to our system173

is the point cloud of the object P ∈ RN×6, where174

N denotes the number of points and six dimen-175

sions are the three dimension xyz coordinate and176

three dimension RGB color for each point. To pre-177

dict the 3D Pose of the object, we try to predict178

the front direction F = (x1, y1, z1)and up direc-179

tion UP = (x2, y2, z2) in the world coordinate180

system.181

la : latitude of the direction, it is computed182

from the x, y, z axes of the direction as: la =183

arctan( z√
x2+y2

)184

La : formulated latitude class and Na : the number185

of latitude classes, we formulate the latitude class186

La of objects as187

La = round(Na × la+π/2
π )188

ln : longitude of the direction, it is computed189

from the x and y axes of the direction as: ln =190

arctan( yx)191

Ln : formulated longitude class, and Nn : the num-192

ber of longitude classes, we formulate the longi-193

tude class Ln of objects as194

Ln = round(Nn × ln+π
2π )195

Latitude and Longitude class are calculated from 196

the front direction. U : formulated up class and 197

N : the number of up classes, we also formulate 198

the up class of objects as 199

U = round(N × u+π
2π ), U : up level of the object, 200

and it is computed from the y, z axes of the up 201

direction as: 202

u = arctan(yz ), 203

Up class are calculated from the up direction; the 204

three classes are independent of each other. Figure 205

3 illustrates the lng and lat classification given the 206

front direction. 207

Fig. 3: Latitude and Longitude Class

Regression. Given the object coordinate P ∈ 208

RN×3 from coordinate+color input P ∈ RN×6, 209

the NPCS system tries to predict the object 210

coordinatePnorm ∈ RNi×3 in canonical space, Ni 211

denotes the number of points after removing out- 212

3



liers in RANSAC algorithm. And the 3D rotation213

Rotation ∈ R3 is computed. The ground truth214

3D rotation is computed from Euler angle rotation215

matrix MR ∈ R3×3 By aligning front and up di-216

rections to the x and y axes in world coordinates.217

4 Method218

4.1 Ca3DPose: Object-level Classification219

Architecture Overview. As shown in Figure 2.220

In U-Net backbone method, following Minsu3d’s221

previous works, our object-level classification-222

based method leverage the Sparse U-Net as223

the backbone to produce point-wise feature F224

(NŒ16). We leverage the U-Net implementation225

from Minsu3d, which is powered by Minkowski.226

The backbone network is followed by a 3D227

30Œ30Œ30 voxelization model to get a fixed size228

feature (30Œ30Œ30Œ16), and the empty voxel is229

assigned zero features to encode the geometry of230

the 3D object better. The voxelization model is231

flattened to get an object-level feature. In PAConv232

backbone method, we modify point convolution233

following tricks in PAConv and get point level fea-234

tures. We use max pool layers to get object-level235

features. At the decoder side of the Ca3DPose,236

3 MLP classifiers are used to predict lng_class,237

lat_class, and up_class. And the front direction, up238

direction, and 3D rotationRotation3are computed239

by the three classes.240

Loss Function: The pretrained backbone U-Net241

network uses the same loss function as described242

in Minsu3d. In our Ca3dPose model, we use243

3 standard softmax loss functions for classifica-244

tion Llng, Llat, Lup. Then we assigned different245

weights to 3 classifications to get total loss : L =246

W1 ∗ Llng +W2 ∗ Llat +W3 ∗ Lup247

4.2 Normalized Object Coordinate248

Space-based Regression249

Architecture Overview . As shown in Figure250

4. As the work GAPartNet introduced, their nor-251

malized Object Coordinate based method lever-252

age the Sparse U-Net as a backbone to produce253

point-wise feature F ∈ (N × 16). Our reim-254

plementation uses the U-Net implementation from255

MINSu3d, which is powered by Minkowski En-256

gine. Their work use domain-generalizable object257

segmentation, while we use annotated object seg-258

mentation in Multiscan directly. As NOCS work259

suggested, the backbone network is followed by260

three MLPs to get point-wise NOCS regression. 261

Then using RANSAC(Fischler et al., 1981)and 262

Umeyama(Umeyama, 1991), the NOCS method 263

can get the 3D rotation Rotation ∈ R3and 3D 264

translationT ∈ R3Different from the original 265

NOCS method, we set the 1D scale as 1 in the 266

Umeyama algorithm rather than getting the 7D 267

pose results. Finally, we use the 3D rotation as 268

the 3D pose estimation results. 269

Loss Function: The pretrained backbone U-Net 270

network uses the same loss function as described 271

in MINSu3d. In the NOCS regression method, as 272

GAPartNet suggested, we use three loss functions. 273

The point-wise coordinate loss: L(P, Pnorm) = 274∑
(x,y,z)∈Ni

((x−x∗)2+(y−y∗)2+(z−z∗)2)

Ni
, the rotation 275

prediction loss: LR = sqrt(R,R∗), and transla- 276

tion prediction loss: LT = sqrt(T, T ∗) 277

Then we assigned different weights to three 278

kinds of losses to get the total loss: 279

L = W1 ∗ L(P, Pnorm) +W2 ∗ LR +W3 ∗ LT 280

Symmetry-aware Pose Estimation : Unlike 281

the original NOCS work in GAPartNet, we use 282

the original regression rather than the NPCS re- 283

gression loss by their work. Therefore, we do not 284

tolerate symmetries for object pose estimation. 285

5 Experiments and Results 286

Data Split and Statistics We randomly split the 287

Multiscan dataset into train and test sets by ratio 288

5:1. Since each scene contains multiple scans, we 289

split dataset by scene level to avoid the same ob- 290

jects appearing in both sets. We remove the ob- 291

jects with the semantic label "-1" and train on all 292

the other objects, and Table 1 shows the objects 293

and scenes number in train and test sets. 294

Dataset Scenes Objects
train 171 2941
test 37 604

Table 1: Dataset Statistics

Evaluataion Metrics: Following the previous 295

3D pose estimation work in GAPartNet, we com- 296

pute the average error angel Rerr as the sum of 297

the error angles of the front and up directions. 298

we modify the widely-used metrics (5◦,5cm), 299

(10◦,10cm) to our own metrics AC_5, AC_10 and 300

AC_20 by removing the translation toleration part, 301

e.g., AC_5 is the accuracy of prediction that the 302

error angle is within 5◦ 303

4



Fig. 4: Re-implemented NOCS Method Pipeline

Network Architecture and Computation Time.304

Details are shown in appendix sections A and B305

Main Results. Fig5 shows the best results of306

Ca3DPose model using PAConv backbone. Fig6307

shows other results as comparisons. It shows that308

we achieve an AC_5 of 0.631, AC_10 of 0.697 and309

AC_20 of 0.763, which outperforms the baseline310

method. Also, the PAConv backbone method out-311

performs the U-Net backbone method since point312

convolution keeps more input features compared313

with voxelization in U-Net.314

Fig. 5: Best Ca3DPose Results on Test Set

Fig. 6: Comparison Results on Test Set

6 Conclusion315

We presented a method for category-level 3D pose316

estimation based on object-level classification. We317

also reimplemented a Normalized Object Coordi-318

nate Space-based method as a baseline. We train319

and compare the results in the Multiscan dataset 320

and show that our Ca3DPose models based on 321

both backbones outperform the baseline method. 322

Future work should investigate the performance in 323

another 3D scene dataset. 324
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A Network architecture429

Ca3DPose In the U-Net backbone stage, we430

use the exact same network architecture as431

MINSu3d. In the voxelization stage, we use432

a 30 × 30 × 30 voxel grid. In MLP classi-433

fier stage, we use three (n_sizes × 256), (256 ×434

lng/lat/up_classes)linear layers, where N_sizes435

denotes the flattened object-level features. Table2436

shows the parameter size.437

Part(type) Output Shape Param#
backbone - 7.5M

fc1(Linear) (n_size, 256) 56.6M
dropout(Dropout) (n_size, 256) 0

fc_lat(Linear) (256, 128) 32.9K
fc_lng(Linear) (256, 256) 65.8K
fc_up(Linear) (256, 256) 65.8K

Table 2: Hyper-parameters of Ca3DPose Model

NOCS In U-Net backbone stage, we use the438

same network architecture as Ca3DPose. Then we439

use (16×9), (9×3) linear layers in MLP to predict440

NOCS coordinates in three channels.441

B Training Details and Computation442

Times443

- Our network is implemented on Python 3.8 and444

Pytorch 1.8.2, and our environment is445

- CPU: Intel Core i7-12700 @ 2.10-4.90GHz × 12446

- RAM: 32GB447

- GPU: NVIDIA GeForce RTX 3090 Ti 24GB448

- System: Ubuntu 20.04.2 LTS449

It takes us 12hr to train the Ca3DPose model450

with U-Net backbone, 4hr to train the Ca3DPose451

model with PAConv backbone and 30hr10min to452

train the NOCS model; the average inference time453

per object is 1.004s454

C Visualization455

We provide visualization of 3D pose estimation,456

the visualization contains current coordinates, ob-457

ject point cloud, and front direction. The default458

visualization code shows good results compari-459

son within A_5 and predictions comparison over460

AC_10.461
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